TI-86

Degrees-Minutes-Seconds and Radians

Important symbols and where to find them:

- DDMS can be found in MATH-ANGLE.
- $\quad \pi$ can be found above the ${ }^{\wedge}$.
- The minute symbol (') can be found in MATH-ANGLE.
- Dec can be found in in BASE-CONV.

1. Find the decimal approximation for $46^{\circ} 30^{\prime} 20^{\prime \prime}$.

Either Degree or Radian MODE is fine.
Enter the numbers and symbols.
Press ENTER.
The result should be 46.5055555556 .
2. Change 46.5° to Degrees-Minutes-Seconds.

Either Degree or Radian MODE is fine.
Make the home screen look like this: 46.5 DMS
The result should be $46^{\circ} 30^{\prime} 0^{\prime \prime}$.
3. Change $46^{\circ} 30^{\prime} 20^{\prime \prime}$ to radians.

Either Degree or Radian MODE is fine.
There is no special function on the calculator to handle the conversion. Just do the math as indicated here: The home screen should eventually look like this: (46' $\mathbf{3 0} \mathbf{0}^{\prime} \mathbf{2 0}$) ($\boldsymbol{\pi} / \mathbf{1 8 0}$) The result should be .811675064914 .
4. Change 46.507° to radians.

Either Degree or Radian MODE is fine.
There is no special function on the calculator to handle the conversion. Just do the math as indicated here: (46.507) ($\pi / \mathbf{1 8 0}$)
The result should be .811700275225 .
5. Change .81158 radians to Degrees.

We must be in Degree MODE.
The home screen should eventually look like this: .81158 ${ }^{r}$ or .81158 ${ }^{r}>$ DMS depending on which form you would like for your answer.
The result should be 46.500087372 or $46^{\circ} 30^{\prime} 0.391^{\prime \prime}$
6. Add $46^{\circ} 30^{\prime} 20^{\prime \prime}+10^{\circ} 40^{\prime} 50^{\prime \prime}$.

Either Degree or Radian MODE is fine.
The home screen should eventually look just like this: 46' 30' 20' + 10' 40' 50'
The result should be approximately 57.1861111111.
7. Change the result of problem 6 to Degrees-Minutes-Seconds.

The home screen should look like this if coming directly from the example above: Ans DMS. The result should be $57^{\circ} 11^{\prime} 10^{\prime \prime}$.

