Matrices and the TI-83, TI-83+, and the TI-84

The $\mathrm{TI}-83$ has a matrix key, labeled MATRX. The matrix capability on the TI-83+ and the TI-84 will be found above the x^{-1} key, and will be labeled MATRX or MATRIX. For simplicity, the word MATRIX is used throughout this document.

1. Entering a matrix such as $\left[\begin{array}{cccc}1 & -2 & 3 & 9 \\ -1 & 3 & 0 & -4 \\ 2 & -5 & 5 & 17\end{array}\right]$

- MATRIX \rightarrow EDIT
- Choose 1:[A].
- Choose the size of the matrix by entering the values where the cursor is blinking. Use 3×4 for our matrix.
- Now enter each element of the matrix. Press ENTER after each entry. The cursor moves to the right after each entry.
- When the matrix is entered, go back to the Home Screen with 2nd QUIT.
- To view the matrix in the Home Screen: MATRIX \rightarrow NAMES \rightarrow [A] \rightarrow ENTER.

Note: Whenever we want a matrix name, such as [A] , to appear in the home screen, we access the name with this process: MATRIX \rightarrow NAMES \rightarrow [A] \rightarrow ENTER. We cannot just type in the \mathbf{A}.

2. Matrix addition

- To add $[A]+[B]$, the Home Screen will need to look like this: $[A]+[B]$.
- Enter each matrix and then access the matrix names as indicated in the box above.
- To practice adding matrices, let's find $[A]+[B]$, if $[A]=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ and $[B]=\left[\begin{array}{ll}5 & 6 \\ 7 & 8\end{array}\right]$. The result should be $\left[\begin{array}{cc}6 & 8 \\ 10 & 12\end{array}\right]$.

3. Scalar multiplication

- To multiply a matrix [A] by a number, such as 3, your Home Screen should look like this: 3*[A].
- To practice scalar multiplication, find $3^{*}[A]$, if $[A]=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$. The result of the scalar multiplication, $3^{*}[A]$, should be: $\left[\begin{array}{cc}3 & 6 \\ 9 & 12\end{array}\right]$.

4. Matrix multiplication

- To multiply 2 matrices together, such as $[A]$ and $[B]$, the Home Screen should look like this: [A]*[B] Note that the number of columns in the $1^{\text {st }}$ matrix must equal the number of rows in the $2^{\text {nd }}$ matrix.
- To practice matrix multiplication, find $[A]^{*}[B]$, if $[A]=\left[\begin{array}{ccc}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]$ and $[B]=\left[\begin{array}{cccc}7 & 8 & 9 & 10 \\ 11 & 12 & 13 & 14 \\ 15 & 16 & 17 & 18\end{array}\right]$ Note that $[A]$ is 2×3, and $[B]$ is 3×4. Since there are 3 columns in $[A]$ and 3 rows in $[B]$, it is possible to multiply $[\mathrm{A}] \times[\mathrm{B}]$.
The result of the matrix multiplication, $[A]^{*}[B]$ will be the 2×4 matrix: $\left[\begin{array}{cccc}74 & 80 & 86 & 92 \\ 173 & 188 & 203 & 218\end{array}\right]$

5. Determinant of a matrix

- The det can be found in MATRIX \rightarrow MATH. The first choice is det.
- The Home Screen should look like this: det [A]

Note that a determinant can be found for a square matrix only.

- To practice, find the determinant of $[A]$, if $[A]=\left[\begin{array}{ccc}1 & -2 & 3 \\ -1 & 3 & 0 \\ 2 & -5 & 5\end{array}\right]$.
- The result of $|A|$, the determinant of $[A]$, is 2 .

6. Inverse of a matrix

- To find the inverse of a matrix A, the Home Screen should look like this: $[A]^{-1}$
- Note that a matrix must be square to have an inverse.
- Note that the exponent, -1 , is accessed by pressing the \mathbf{x}^{-1} key on the calculator.
- To practice, find the inverse of matrix A, if $[A]=\left[\begin{array}{ccc}1 & -2 & 3 \\ -1 & 3 & 0 \\ 2 & -5 & 5\end{array}\right]$.

The result should be $\left[\begin{array}{ccc}7.5 & -2.5 & -4.5 \\ 2.5 & -.5 & -1.5 \\ -.5 & .5 & .5\end{array}\right]$.

- To change the entries of the resulting matrix to fractions: MATH \rightarrow FRAC \rightarrow ENTER.

If the entries are changed to fractions, the result should be $\left[\begin{array}{ccc}\frac{15}{2} & -\frac{5}{2} & -\frac{9}{2} \\ \frac{5}{2} & -\frac{1}{2} & -\frac{3}{2} \\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{2}\end{array}\right]$.

7. Using the inverse matrix to solve a system

- To solve the system $2 x-5 y+5 z=17$ with the inverse matrix method,

$$
-x+3 y \quad=-4
$$

$$
x-2 y+3 z=9
$$

$$
\text { enter }[A]=\left[\begin{array}{ccc}
2 & -5 & 5 \\
-1 & 3 & 0 \\
1 & -2 & 3
\end{array}\right] \quad \text { and }[B]=\left[\begin{array}{c}
17 \\
-4 \\
9
\end{array}\right]
$$

- The Home Screen should look like this: $[A]^{-1} *[B]$
- The result is $\left[\begin{array}{c}1 \\ -1 \\ 2\end{array}\right]$ which means that $(1,-1,2)$ is the solution to the system.

8. ref and rref are found in MATRIX \rightarrow MATH.

To solve a system of equations we can find the reduced row echelon form of a matrix.
The Home Screen should look like this: $\operatorname{rref}([\mathrm{A}])$

- Find rref in MATRIX \rightarrow MATH. Arrow down to rref.
- To practice finding the reduced row echelon form, find $\operatorname{rref}([\mathrm{A}])$, if $[\mathrm{A}]=\left[\begin{array}{cccc}-1 & 3 & 0 & -4 \\ 1 & -2 & 3 & 9 \\ 2 & -5 & 5 & 17\end{array}\right]$
- The result of the $\operatorname{rref}([\mathrm{A}])$ should be: $\left[\begin{array}{cccc}1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 2\end{array}\right]$. So, $(1,-1,2)$ is the solution.

9. Elementary row operations are found in MATRIX \rightarrow MATH.

After applying each of the row operations below, store the matrix at the original matrix name, by using the STO key at the bottom of the keys on the left of the keyboard.
rowSwap is used to swap rows.
The template is: rowSwap([matrix name], a row number, the other row number) \rightarrow [matrix name]
row+ is used to add one row to another and store the result in the other row. The template is: row+([matrix name], a row number, the other row number) \rightarrow [matrix name]
*row is used to multiply a row by a constant and store the result in the same row. The template is: *row(constant multiplier,[matrix name], row number) \rightarrow [matrix name]
*row+ is used to multiply a row by a constant, add the new values to another row, and store the result in the other row. The template is:
*row+ (constant multiplier,[matrix name], a row number, the other row number) \rightarrow [matrix name]

We'll start with matrix [A] above: $\left[\begin{array}{cccc}-1 & 3 & 0 & -4 \\ 1 & -2 & 3 & 9 \\ 2 & -5 & 5 & 17\end{array}\right]$

- Let's get a 1 in the upper left position:

We'll swap row 1 and row 2 of our matrix $[A]$ and store as a new $[A]$: rowSwap $([A], \mathbf{1}, \mathbf{2}) \rightarrow[A]$ The result should be:

$$
\left[\begin{array}{cccc}
1 & -2 & 3 & 9 \\
-1 & 3 & 0 & -4 \\
2 & -5 & 5 & 17
\end{array}\right]
$$

- Let's get a 0 in the first position of the $2^{\text {nd }}$ row: We'll add row 1 to row 2 and store in row 2 , and then store as a new $[A]: \operatorname{row}+([A], 1,2) \rightarrow[A]$
The result should be: $\left[\begin{array}{cccc}1 & -2 & 3 & 9 \\ 0 & 1 & 3 & 5 \\ 2 & -5 & 5 & 17\end{array}\right]$
- Let's get a 0 in the first position of the $3^{\text {rd }}$ row: Multiply -2 times row 1 and add the result into row 3 , storing in row 3: *row+ $(-2,[A], 1,3) \rightarrow[A]$
The result should be: $\left[\begin{array}{cccc}1 & -2 & 3 & 9 \\ 0 & 1 & 3 & 5 \\ 0 & -1 & -1 & -1\end{array}\right]$
- Let's get a 0 in the $2^{\text {nd }}$ position of the $3^{\text {rd }}$ row: $\operatorname{row}+([A], 2, \mathbf{3}) \rightarrow[A]$

The result should be: $\left[\begin{array}{cccc}1 & -2 & 3 & 9 \\ 0 & 1 & 3 & 5 \\ 0 & 0 & 2 & 4\end{array}\right]$

- Let's get a 1 in the $3^{\text {rd }}$ position of the $3^{\text {rd }}$ row: ${ }^{*}$ row $(\mathbf{1} / \mathbf{2},[\mathrm{A}], \mathbf{3}) \rightarrow[\mathrm{A}]$

The result should be: $\left[\begin{array}{cccc}1 & -2 & 3 & 9 \\ 0 & 1 & 3 & 5 \\ 0 & 0 & 1 & 2\end{array}\right]$

The final matrix gives the resulting equations:

$$
\begin{aligned}
-2 y+3 z & =9 \\
y+3 z & =5 \\
z & =2
\end{aligned}
$$

