Matrices and the TI-83, TI-83+, and the TI-84

The TI-83 has a matrix key, labeled MATRX. The matrix capability on the TI-83+ and the TI-84 will be found above the x^{-1} key, and will be labeled MATRX or MATRIX. For simplicity, the word MATRIX is used throughout this document.

1. Entering a matrix such as
$$\begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -2 & 3 & 9 \\ -1 & 3 & 0 & -4 \\ 2 & -5 & 5 & 17 \end{bmatrix}$$

- MATRIX \rightarrow EDIT
- Choose 1:[A].
- Choose the *size* of the matrix by entering the values where the cursor is blinking. Use 3x4 for our matrix.
- Now *enter each element* of the matrix. Press ENTER after each entry. The cursor moves to the right after each entry.
- When the matrix is entered, go back to the *Home Screen* with **2nd QUIT**.
- To view the matrix in the Home Screen: MATRIX \rightarrow NAMES \rightarrow [A] \rightarrow ENTER.

Note: Whenever we want a matrix name, such as **[A]**, to appear in the home screen, we access the name with this process: **MATRIX** \rightarrow **NAMES** \rightarrow **[A]** \rightarrow **ENTER**. We cannot just type in the **A**.

2. Matrix addition

- To add [A] + [B], the Home Screen will need to look like this: [A] + [B].
- Enter each matrix and then access the matrix names as indicated in the box above.

• To practice adding matrices, let's find [A] + [B], if [A] = $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ and [B] = $\begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$.

The result should be $\begin{bmatrix} 6 & 8 \\ 10 & 12 \end{bmatrix}$.

3. Scalar multiplication

• To multiply a matrix [A] by a number, such as 3, your Home Screen should look like this: **3***[A].

• To practice scalar multiplication, find $3^{*}[A]$, if $[A] = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$. The result of the scalar multiplication, $3^{*}[A]$, should be: $\begin{bmatrix} 3 & 6 \\ 9 & 12 \end{bmatrix}$.

4. Matrix multiplication

- To multiply 2 matrices together, such as [A] and [B], the Home Screen should look like this: **[A]*[B]** Note that the number of *columns* in the 1st matrix *must* equal the number of *rows* in the 2nd matrix.
- To practice matrix multiplication, find [A]*[B], if [A] = $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$ and [B] = $\begin{bmatrix} 7 & 8 & 9 & 10 \\ 11 & 12 & 13 & 14 \\ 15 & 16 & 17 & 18 \end{bmatrix}$

Note that [A] is 2 x 3, and [B] is 3 x 4. Since there are 3 columns in [A] and 3 rows in [B], it is possible to multiply [A] x [B].

The result of the matrix multiplication [A]*[D] will be the 2 x 4 matrix	74	80	86	92	
The result of the matrix multiplication, [A]*[B] will be the 2 x 4 matrix:	173	188	203	218	1

5. Determinant of a matrix

- The **det** can be found in **MATRIX** \rightarrow **MATH**. The first choice is **det**.
- The Home Screen should look like this: **det [A]** Note that a determinant can be found for a square matrix only.
- To practice, find the determinant of [A], if [A] = $\begin{vmatrix} 1 & -2 & 3 \\ -1 & 3 & 0 \\ 2 & -5 & 5 \end{vmatrix}$.
- The result of |A|, the determinant of [A], is 2.

6. Inverse of a matrix

- To find the inverse of a matrix A, the Home Screen should look like this: **[A]**⁻¹
- Note that a matrix must be square to have an inverse.
- Note that the exponent, -1, is accessed by pressing the \mathbf{x}^{-1} key on the calculator.

• To practice, find the inverse of matrix A, if [A] =
$$\begin{bmatrix} 1 & -2 & 3 \\ -1 & 3 & 0 \\ 2 & -5 & 5 \end{bmatrix}$$
.

The result should be $\begin{bmatrix} 7.5 & -2.5 & -4.5 \\ 2.5 & -.5 & -1.5 \\ -.5 & .5 & .5 \end{bmatrix}.$

• To change the entries of the resulting matrix to fractions: MATH \rightarrow **FRAC** \rightarrow **ENTER**.

If the entries are changed to fractions, the result should be

5	9	
$\overline{2}$	$\frac{1}{2}$	
1	3	
$-\frac{1}{2}$	$-\frac{1}{2}$	
1	1	
$\overline{2}$	$\overline{2}$	
	$-\frac{5}{2}$ $-\frac{1}{2}$ $\frac{1}{2}$	$ \begin{array}{cccc} -\frac{5}{2} & -\frac{9}{2} \\ -\frac{1}{2} & -\frac{3}{2} \\ -\frac{1}{2} & -\frac{3}{2} \\ \frac{1}{2} & \frac{1}{2} \end{array} $

7. Using the inverse matrix to solve a system

• To solve the system 2x - 5y + 5z = 17 with the inverse matrix method, -x + 3y = -4x - 2y + 3z = 9

enter [A] =
$$\begin{bmatrix} 2 & -5 & 5 \\ -1 & 3 & 0 \\ 1 & -2 & 3 \end{bmatrix}$$
 and [B] = $\begin{bmatrix} 17 \\ -4 \\ 9 \end{bmatrix}$.

- The Home Screen should look like this: [A]⁻¹* [B]
- The result is $\begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$ which means that (1, -1, 2) is the solution to the system.

8. ref and rref are found in MATRIX→MATH.

To solve a system of equations we can find the reduced row echelon form of a matrix. The Home Screen should look like this: **rref([A])**

- Find **rref** in **MATRIX** \rightarrow **MATH**. Arrow down to **rref**.
- To practice finding the reduced row echelon form, find rref([A]), if $[A] = \begin{vmatrix} -1 & 3 & 0 & -4 \\ 1 & -2 & 3 & 9 \\ 2 & -5 & 5 & 17 \end{vmatrix}$

• The result of the rref([A]) should be:
$$\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$
. So, (1, -1, 2) is the solution.

9. Elementary row operations are found in MATRIX→MATH.

After applying each of the row operations below, store the matrix at the original matrix name, by using the **STO** ▶ key at the bottom of the keys on the left of the keyboard.

rowSwap is used to swap rows.

The template is: rowSwap([matrix name], a row number, the other row number) →[matrix name]

row+ is used to add one row to another and store the result in the other row. The template is: **row+([matrix name], a row number, the other row number)** →[matrix name]

***row** is used to multiply a row by a constant and store the result in the same row. The template is: ***row(constant multiplier,[matrix name], row number)** \rightarrow [matrix name]

***row+** is used to multiply a row by a constant, add the new values to another row, and store the result in the other row. The template is:

*row+ (constant multiplier,[matrix name], a row number, the other row number) →[matrix name]

We'll start with matrix [A] above: $\begin{bmatrix} -1 & 3 & 0 & -4 \\ 1 & -2 & 3 & 9 \\ 2 & -5 & 5 & 17 \end{bmatrix}$

 Let's get a 1 in the upper left position:
 We'll swap row 1 and row 2 of our matrix [A] and store as a new [A]: rowSwap([A],1,2)→[A] The result should be:

$$\begin{bmatrix} 1 & -2 & 3 & 9 \\ -1 & 3 & 0 & -4 \\ 2 & -5 & 5 & 17 \end{bmatrix}$$

Let's get a 0 in the first position of the 2nd row: We'll add row 1 to row 2 and store in row 2, and then store as a new[A]: row+([A],1,2) →[A]

	[1	-2	3	9]
The result should be:	0	1	3	5
	2	-5	5	17

Let's get a 0 in the first position of the 3rd row: Multiply -2 times row 1 and add the result into row 3, storing in row 3: *row+ (-2,[A],1,3)→[A]

	[1	-2	3	9]
The result should be:	0	1	3	5
	0	-1	-1	-1

• Let's get a 0 in the 2^{nd} position of the 3^{rd} row: row+([A],2,3) \rightarrow [A]

	1	-2	3	9	
The result should be:	0	1	3	5	
	0	0	2	4	

• Let's get a 1 in the 3rd position of the 3rd row: ***row(1/2,[A],3)→[A]**

	[1	-2	3	9]	
The result should be:	0	1	3	5	
	0	0	1	2	

The final matrix gives the resulting equations: