Using the Sequence Mode on the TI-83/TI-83+/TI-84/TI-84+

Consider the logistic sequence $P_{n+1}=3.2\left(1-P_{n}\right) P_{n}$ with $P_{0}=0.3$
We want to graph the sequence, and state the first several terms.

Notes about the variables on the calculator:

- $n \mathrm{Min}=$ the smallest n value
- $\mathrm{u}(n \mathrm{Min})=$ the initial value of u ; that is, first term
- $u(n-1)$ will be the term previous to $u(n)$. Think of them as u_{n-1} and u_{n}.

Steps to successful graphing:

1. Set the MODE: $4^{\text {th }}$ row says func Par Pol SEQ. Choose SEQ.
2. Set the MODE: $5^{\text {th }}$ row says CONNECTED DOT. Choose DOT.
3. Set up the $\mathbf{Y}=$
a. $\quad n \mathrm{Min}=$ State this value as 0 or 1 , whichever your instructor suggests.
b. $\quad u(n)=3.2(1-u(n-1)) u(n-1) \quad$ (Note the use of the P_{n+1} formula from our problem.) To type the \mathbf{u}, use the \mathbf{u} above the 7 key accessed with $2^{\text {nd }} 7$. To type the \boldsymbol{n}, use the $\mathbf{x}, \mathbf{r}, \boldsymbol{\theta}, \mathbf{n}$ button on the calculator.
c. $u(n M i n)=\{0.3\} \quad$ (Note that this is the $P_{0}=0.3$. Yes, we must use the braces.)
4. Set up your WINDOW:
$n \mathrm{Min}=\quad$ Set this the same as you set the $n \mathrm{Min}$ in your $\mathrm{Y}=$.
$n \mathrm{Max}=\quad$ Set this at 10 or whatever upper value you would like. This is the number of terms you want.
PlotStart = Set at a value of 1.
Plot Step $=$ Set at a value of 1 .
$X \min =\quad$ Set at a value of -1. You may wish to change this later.
Xmax $=\quad$ Set at the value the same as your n Max in this list.
$\mathrm{Xscl}=\quad$ Set at a value of 1.
Ymin $=\quad$ Set at a value of -0.5 to get a good visual.
$Y \max =\quad$ Set at a value of 1, if your function values are less than 1.
Yscl $=\quad$ Set at whatever increment works well, such as 1.
5. GRAPH
6. TRACE
7. Results from our example:

$n=1$	
$\mathrm{X}=1$	$\mathrm{Y}=0.3$
$n=2$	$\mathrm{Y}=0.672$
$\mathrm{X}=2$	
$n=3$	$\mathrm{Y}=.7053312$
$\mathrm{X}=3$	$\mathrm{Y}=0.66508511$
$n=4$	
$\mathrm{X}=4$	$\mathrm{Y}=0.7127901$
$n=5$	$\mathrm{Y}=0.6551052$
$\mathrm{X}=5$	$\mathrm{Y}=0.72301561$
$n=6$	
$\mathrm{X}=6$	$\mathrm{Y}=0.64184493$
$n=7$	
$\mathrm{X}=7$	
$n=8$	$\mathrm{X}=8$

