Matrices and the TI-86

The TI-86 matrix capability is located at MATRX, above the 7 key.

1. Entering a matrix such as $\begin{bmatrix} 1 & -2 & 3 & 9 \\ -1 & 3 & 0 & -4 \\ 2 & -5 & 5 & 17 \end{bmatrix}$

- MATRX → EDIT
- Type in a matrix name such as A, located above LOG.
- ENTER
- Choose the size of the matrix by entering the values where the cursor is blinking. Use 3x4 for our matrix.
- Now *enter each element* of the matrix. Press ENTER after each entry. The cursor moves to the right after each entry.
- When the matrix is entered, go back to the Home Screen with 2nd QUIT or the EXIT key.
- To view the matrix in the Home Screen, type the letter A with ALPHA and then A.

2. Matrix addition

- To add 2 matrices, such as A +[B, enter each matrix first.
- Then make the Home Screen look like: **A + B**.
- To practice adding matrices, let's enter matrix $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ and matrix $B = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$.

The result should be $\begin{bmatrix} 6 & 8 \\ 10 & 12 \end{bmatrix}$.

3. Scalar multiplication

- To multiply a matrix [A] by a number, such as 3, your Home Screen should look like this: **3*A**.
- To practice scalar multiplication, use matrix $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$.

The result of the scalar multiplication, 3*A, should be: $\begin{bmatrix} 3 & 6 \\ 9 & 12 \end{bmatrix}$.

4. Matrix multiplication

- Enter a matrix A and matrix B, but be sure that the number of *columns* in the 1st matrix is equal to the number of *rows* in the 2nd matrix.
- To practice matrix multiplication, find $\mathbf{A}^*\mathbf{B}$, if matrix $\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$ and matrix $\mathbf{B} = \begin{bmatrix} 7 & 8 & 9 & 10 \\ 11 & 12 & 13 & 14 \\ 15 & 16 & 17 & 18 \end{bmatrix}$

Note that A is 2 x 3, and B is 3 x 4. Since there are 3 columns in A and 3 rows in B, it is possible to multiply A x B.

• The result of the matrix multiplication will be the 2 x 4 matrix: $\begin{bmatrix} 74 & 80 & 86 & 92 \\ 173 & 188 & 203 & 218 \end{bmatrix}$

Note that A is 2 x 3, and B is 3 x 4. Since there are 3 columns in A and 3 rows in B, it is possible to multiply A x B.

5. Determinant of a matrix

- The **det** can be found in **MATRX** \rightarrow **MATH**. The first choice is **det**.
- The Home Screen should look like this: det A Note that a determinant can be found for a square matrix only.
- To practice, find the determinant of matrix A , if matrix A = $\begin{bmatrix} 1 & -2 & 3 \\ -1 & 3 & 0 \\ 2 & -5 & 5 \end{bmatrix}$.
- The result of |A|, the determinant of matrix A, is 2.

6. Inverse of a matrix

- To find the inverse of a matrix A, the Home Screen should look like this: A-1 Note that a matrix must be square to have an inverse. Note that the exponent, -1, is located above the EE key.
- To practice, find the inverse of matrix A, if matrix A = $\begin{bmatrix} -1 & 3 & 0 \\ 2 & -5 & 5 \end{bmatrix}$.
- The result should be $\begin{bmatrix} 7.5 & -2.5 & -4.5 \\ 2.5 & -.5 & -1.5 \\ -.5 & .5 & .5 \end{bmatrix}.$
- To change the entries of the resulting matrix to fractions: MATH \rightarrow FRAC \rightarrow ENTER.

The ► FRAC is most easily found in the CATALOG, above the "a" words.

If the entries are changed to fractions, the result should be $\begin{vmatrix} \frac{15}{2} & -\frac{5}{2} & -\frac{9}{2} \\ \frac{5}{2} & -\frac{1}{2} & -\frac{3}{2} \\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{vmatrix}.$

7. Using the inverse matrix to solve a system

To solve the system 2x - 5y + 5z = 17with the inverse matrix method, -x + 3y = -4

enter matrix
$$A = \begin{bmatrix} 2 & -5 & 5 \\ -1 & 3 & 0 \\ 1 & -2 & 3 \end{bmatrix}$$
 and matrix $B = \begin{bmatrix} 17 \\ -4 \\ 9 \end{bmatrix}$.

- The Home Screen should look like this: A-1 * B
- The result is $\begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$ which means that (1, -1, 2) is the solution to the system.

8. ref and rref are found in MATRX \rightarrow OPS.

To solve a system of equations we can find the reduced row echelon form of a matrix.

The Home Screen should look like this: rref A

- To practice finding the reduced row echelon form, find rref A, if [A] = $\begin{vmatrix} -1 & 3 & 0 & -4 \\ 1 & -2 & 3 & 9 \\ 2 & -5 & 5 & 17 \end{vmatrix}$
- The result of the rref A should be: $\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 2 \end{bmatrix}$. So, (1, -1, 2) is the solution.

9. Elementary row operations are found in MATRX \rightarrow OPS.

After applying each of the row operations below, store the new matrix at the original matrix name, each time, by using the STO▶ key at the bottom of the keys on the left of the keyboard.

rSwap is used to swap two rows.

The template is: rSwap(matrix name, a row number, the other row number) → matrix name

rAdd is used to add one row to another and store the result in the other row.

The template is: rAdd(matrix name, a row number, the other row number) → matrix name

multR is used to multiply a row by a constant and store the result in the same row.

The template is: multR(constant multiplier,matrix name, row number) -> matrix name

mRAdd is used to multiply a row by a constant, add it to another row, and store the result in the second row. The template is:

mRAdd(constant multiplier,matrix name, a row number, the other row number) -> matrix name

We'll start with matrix [A] above:
$$\begin{bmatrix} -1 & 3 & 0 & -4 \\ 1 & -2 & 3 & 9 \\ 2 & -5 & 5 & 17 \end{bmatrix}$$

• Let's get a 1 in the upper left position:

We'll swap row 1 and row 2 of our matrix A and store as a new A: rSwap(A,1,2)→A
The result should be:

$$\begin{bmatrix} 1 & -2 & 3 & 9 \\ -1 & 3 & 0 & -4 \\ 2 & -5 & 5 & 17 \end{bmatrix}$$

• Let's get a 0 in the first position of the 2nd row: We'll add row 1 to row 2 and store in row 2, and then store as a new A. The Home Screen should look like: rAdd(A,1,2) →A

The result should be:
$$\begin{bmatrix} 1 & -2 & 3 & 9 \\ 0 & 1 & 3 & 5 \\ 2 & -5 & 5 & 17 \end{bmatrix}$$

• Let's get a 0 in the first position of the 3rd row: Multiply -2 times row 1 and add the result into row 3, storing in row 3: mRAdd (-2,A,1,3)→A

The result should be:
$$\begin{bmatrix} 1 & -2 & 3 & 9 \\ 0 & 1 & 3 & 5 \\ 0 & -1 & -1 & -1 \end{bmatrix}$$

• Let's get a 0 in the 2^{nd} position of the 3^{rd} row: $rAdd(A,2,3) \rightarrow A$

The result should be:
$$\begin{bmatrix} 1 & -2 & 3 & 9 \\ 0 & 1 & 3 & 5 \\ 0 & 0 & 2 & 4 \end{bmatrix}$$

• Let's get a 1 in the 3rd position of the 3rd row: multR(1/2,A,3)→A

The result should be:
$$\begin{bmatrix} 1 & -2 & 3 & 9 \\ 0 & 1 & 3 & 5 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$

The final matrix gives the resulting equations:

$$x - 2y + 3z = 9$$

 $y + 3z = 5$
 $z = 2$