JOHNSON COUNTY COMMUNITY COLLEGE
 Calculus III Final Exam Review

This final review will be a useful starting point as you study for your final exam. You should also study your tests and homework from this semester. There are concepts on the final exam that are not covered on this review.

1. Let $\mathbf{r}^{\prime}(t)=\cos 2 t \mathbf{i}-2 \sin t \mathbf{j}+\frac{1}{1+t^{2}} \mathbf{k}$ with $\mathbf{r}(0)=\langle 3,-2,1\rangle$. Find $\mathbf{r}(t)$.
2. Find the unit tangent vector for $\mathbf{r}(t)=2 \cos t \mathbf{i}+2 \sin t \mathbf{j}+t \mathbf{k}$ at $t=\frac{\pi}{4}$.
3. For $f(x, y)=x e^{x^{2} y}$, find f_{x} and f_{y} at the point $(1, \ln 2)$.
4. Find the directional derivative of $f(x, y)=4-x^{2}-\frac{y^{2}}{4}$ at $(1,2)$ in the direction of $\mathbf{v}=\langle 3,4\rangle$.
5. What is the direction of maximum increase of $f(x, y, z)=x^{2}+y^{2}-4 z$ from the point $(2,-1,1)$?
6. Find an equation of the tangent plane to the hyperboloid $z^{2}=12+2 x^{2}+2 y^{2}$ at the point $(1,-1,4)$.
7. Find the relative extrema and/or saddle points of the function

$$
f(x, y)=2 x^{2}+2 x y+y^{2}+2 x-3 .
$$

8. Find the relative extrema and/or saddle points of the function $f(x, y)=x^{3}-3 x y+y^{3}$.
9. Find the minimum value of $f(x, y, z)=2 x^{2}+y^{2}+3 z^{2}$ subject to the constraint that (x, y, z) is restricted to the plane $2 x-3 y+4 z=49$.
10. Evaluate $\int_{0}^{2} \int_{0}^{x} \int_{0}^{x+y} e^{x}(y+2 z) d z d y d x$.
11. Find the volume of the solid region Q cut from the sphere $x^{2}+y^{2}+z^{2}=4$ by the cylinder $r=2 \sin \theta$.
12. Find the volume of the solid region Q bounded below by the upper nappe of the cone $z^{2}=x^{2}+y^{2}$ and bounded above by the sphere $x^{2}+y^{2}+z^{2}=9$.
13. Find the work done by the force field $\mathbf{F}(x, y, z)=-\frac{1}{2} x \mathbf{i}-\frac{1}{2} y \mathbf{j}+\frac{1}{4} \mathbf{k}$ on a particle as it moves along the helix determined by $\mathbf{r}(t)=\cos t \mathbf{i}+\sin t \mathbf{j}+t \mathbf{k}$ from the point $(1,0,0)$ to $(-1,0,3 \pi)$.
14. Let C be the circle of radius 3 determined by $\mathbf{r}(t)=3 \cos t \mathbf{i}+3 \sin t \mathbf{j}$, where $0 \leq t \leq 2 \pi$ and evaluate the line integral $\int_{C} y^{3} d x+\left(x^{3}+3 x y^{2}\right) d y$.
15. While subject to the force $\mathbf{F}(x, y)=y^{3} \mathbf{i}+\left(x^{3}+3 x y^{2}\right) \mathbf{j}$, a particle travels once counterclockwise around the circle of radius 3 centered at the origin. Find the work done by F on this particle.
16. Evaluate the surface integral $\iint_{S}\left(y^{2}+2 y z\right) d \sigma$, where S is the first octant portion of the plane $2 x+y+2 z=6$.
17. Find the flux of $\mathbf{F}(x, y, z)=\left\langle y^{3},-x y, x z\right\rangle$ across S, the first octant portion of the plane $x+y+z=1$, where \mathbf{n} is directed away from the origin.
18. Find the outward flux of $\mathbf{F}(x, y, z)=y^{3} \mathbf{i}-x y \mathbf{j}+x z \mathbf{k}$ across S, the closed tetrahedron formed by the planes $x=0, y=0, z=0$, and the first octant portion of the plane $x+y+z=1$.

ANSWERS

1. $\mathbf{r}(t)=\left(\frac{1}{2} \sin 2 t+3\right) \mathbf{i}+(2 \cos t-4) \mathbf{j}+(\arctan t+1) \mathbf{k}$
2. $\mathbf{T}\left(\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{\sqrt{5}} \mathbf{i}+\frac{\sqrt{2}}{\sqrt{5}} \mathbf{j}+\frac{1}{\sqrt{5}} \mathbf{k}$
3. $f_{x}(1, \ln 2)=2+4 \ln 2 ; \quad f_{y}(1, \ln 2)=2$
4. -2
5. In the direction of $\nabla f=4 \mathbf{i}-2 \mathbf{j}-4 \mathbf{k}$ (or $\mathbf{u}=\frac{\nabla f}{|\nabla f|}=\frac{2}{3} \mathbf{i}-\frac{1}{3} \mathbf{j}-\frac{2}{3} \mathbf{k}$)
6. $x-y-2 z+6=0$
7. Relative Minimum is -4 when $(x, y)=(-1,1)$
8. Saddle point $(0,0,0)$; relative minimum is -1 when $(x, y)=(1,1)$
9. Minimum is 147 , when $(x, y, z)=(3,-9,4)$
10. $\frac{19}{3}\left(e^{2}+3\right)$
11. $\frac{16}{9}(3 \pi-4)$
12. $9 \pi(2-\sqrt{2})$
13. $\frac{3 \pi}{4}$
14. $\frac{243 \pi}{4}$
15. $\frac{243 \pi}{4}$
16. $\frac{243}{2}$
17. $\frac{1}{20}$
18.0
