The Black Hole Conundrum

Holograms? Firewalls? Wormholes? William Koch JCCC Astronomy Professor

MEETING ON BLACK HOLES KITP AUG 2013

Spirited Disagreements

MOTIVATION

- Black holes are:
 - → real
 - extreme testing ground for ideas.
 - forcing deep re-thinking about wellestablished principles of physics.
 - giving clues how physics of particles and physics of gravity are connected.
 - COOL!

PILLARS OF MODERN PHYSICS

Special and General Relativity

THEORIES OF RELATIVITY

- Special Relativity: (1905)
 - \rightarrow E = mc²
 - → Speed limit is c
- General Relativity (1915):
 - → Gravity is curvature of spacetime

MAKE GIFS AT GIFSOUP.COM

EQUIVALENCE PRINCIPLE OF GENERAL RELATIVITY

- I. hovering above massive body = acceleration in empty space
- 2. free-fall = floating in empty space

CLASSICAL BLACK HOLES (THE KIND YOUR GRANDMOTHER TOLD YOU ABOUT)

BLACK HOLES

• Created by complete gravitational collapse of object.

Anatomy of a Non-Rotating Black Hole

rs

Event Horizon is a one-way door!

 $v_{\rm esc} = c$

Stuff in here is trapped and will be destroyed at singularity.

Singularity is a point of infinitely curved spacetime

INFORMATION

"Regard the physical world as made of information, with energy and matter as incidentals."

— John Archibald Wheeler

INFORMATION |

- Particle properties (position, speed, spin, etc) are information.
- information is encoded in bits (like computers)
- Information has physical reality and is associated with energy.
- Physical laws describe information change over time.

John Wheeler

INFORMATION

• Objects are huge globs of bits of information.

→ generally hidden due to huge number and tiny size of

CONSERVATION OF INFORMATION

• Stephen Hawking, early 70's

Stephen Hawking

Stephen Hawking's Big Question

- What happens to information if it is tossed into a black hole?
- According to GR, information is lost forever behind event horizon.

INFORMATION PARADOX

- Laws require that information be conserved.
- Laws seem to conspire to *prevent* information from being conserved.
- Hence, the "information paradox"...and triple facepalm!

BLACK HOLE THERMODYNAMICS

• Jacob Beckenstein, 1973 - Black Holes and Entropy

Jacob Bekenstein

ENTROPY EXAMPLE

- Clean room (low entropy)
- Messy room (high entropy)

ENTROPY

- Swimming Pool
 - → Interesting in temperature and volume.
 - → No knowledge of position & speed of each atom-lots of hidden information.

ENTROPY

- **Entropy** (S) is a measure of how may ways the positions and speeds of atoms could be arranged to yield same temperature and volume.
 - → A measure of the amount of hidden information.

FIRST LAW THERMODYNAMICS

$$dE = TdS - W$$

• Basically a statement of the conservation of energy.

BLACK HOLE THERMODYNAMICS

$$dM = \frac{\kappa}{8\pi M} dA - W$$

• Bekenstein imagined building black hole piece at a time

BLACK HOLE ENTROPY dE = TdS - W $dM = \frac{\kappa}{M} dA - W$

- Work (W) has same meaning in both equations
- Mass & Energy are equivalent $(E = mc^2)$.
- Black hole temperature: $T \sim \frac{1}{M}$
- Black hole entropy: $dS \sim dA$
- Entropy (hidden information, in bits) of black hole is proportional to its surface area (in Plank-areas)!

HAWKING RADIATION

• Stephen Hawking, 1974 - Particle Production by Black Holes

Hawking Radiation

- Black holes must radiate.
- Quantum fluctuations spontaneously create particles and radiation outside event horizon that radiate out into space.
- Comes at cost of gravitation energy of black hole.
- Black hole slowly evaporates away!

A PROBLEM

Information Loss in Hawking Radiation

- Hawking argues that the radiation contains NO information of anything that is tossed in.
- Black hole evaporates with that information trapped inside.

→ Information is irretrievably destroyed!

PILLARS OF MODERN PHYSICS

BLACK HOLE COMPLIMENTARITY

Leonard Susskind, Lárus Thorlacius, and John Uglum, 1993 - The stretched horizon and black hole complementarity

Juan Maldacena, 1997 - AdS/CFT Correspondance

Leonard Susskind

Juan Maldacena

Unruh Effect

• Unruh Effect: An accelerating observer will observe thermal radiation even when a non-accelerating observer would observe none.

William Unruh

HOT "STRETCHED HORIZON"

Hovering = Acceleration

NO HOT "STRETCHED HORIZON"

• Free-fall = Empty space

Event Horizon

WHAT OBSERVER SEES

- Hot stretched horizon I Plank-length above event horizon.
- Information (astronaut) gets thermalized and scrambled, but not destroyed!
 - → Never sees information cross horizon!
- Bits of information come out later as Hawking radiation.
 - NO INFORMATION LOSS!

What In-falling Astronaut Sees

• From General Relativity, notices "no drama" as he passes event horizon

Zzzzzz...

Event Horizon

What In-falling Astronaut Sees

- From General Relativity, notices "no drama" as he passes event horizon
- Information goes in with him.
- Cannot communicate his arrival inside to outside horizon.

Event Horizon

COMPLIMENTARITY

- Stories seem contradictory, but are consistent in observation.
- Neither sees information both places.
- Neither sees information destroyed!

acts like particle here

acts like wave here

HOLOGRAPHIC PRINCIPLE

• Leonard Susskind, 1994 - The World as a Hologram

HOLOGRAMS

- 3-d volume of information can be entirely encoded on 2-d surface.
 - → 2-d encoding scrambles 3-d information
 - → Need to know rule to descramble it and create image.

HOLOGRAPHIC EVENT HORIZON

- Observer sees in-falling information scrambled & stored on "stretched horizon"
- Like a 2-d hologram of everything that has fallen in (later emitted as Hawking radiation)

Accelerating Universe

- Expansion of universe is accelerating!
- Creates point of no return around us (46.6 Bly).
 - Like event horizon of black hole inside-out.
- Is information about rest of 3-d universe somehow encoded on this 2-d cosmic horizon?

HOLOGRAPHIC UNIVERSE

- We are outside cosmological horizon of other regions of the universe.
 - → Are we also encoded on a 2-d surface?
- Are we and the the whole universe a projection of a 2-d surface?

A PROBLEM

- Information in Black Hole Radiation, Don Page, Phys Rev Letters, 1993
- Complementarity or Firewalls?, A. Almheiri, D. Marolf, J. Polchinski and J. Sully, (AMPS) 2012

QUANTUM WAVE FUNCTIONS

$$ih\frac{\partial}{\partial t}\psi = \hat{H}\psi$$

• Quantum mechanics assigns a wave function (ψ) for particles.

wave function for particle X & Y

• Entangled particles described by single inseparable wave function-each particle carries information about the other.

ENTANGLEMENT MONOGAMY

Allowed

Entanglement Monogamy

ENTANGLEMENT MONOGAMY

Cannot have X maximally entangled with both Y and Z!

PROBLEM WITH COMPLEMENTARITY

• For information to escape and obey "no drama" rule, Hawking radiation has to be multiply entangled!

PILLARS OF MODERN PHYSICS

A NEW PICTURE - FIREWALLS

A. Almheiri, D. Marolf, J. Polchinski and J. Sully, (AMPS)
 2012 (same paper)

FIREWALLS

- To preserve information, entanglement broken at event horizon.
 - → violently increases vacuum energy near event horizon!
 - creates hot soup of particles and radiation just above event horizon - Firewalls!

THE CATCH

- Both observer AND in-falling astronaut observe firewall.
- Astronaut thermalized just above event horizon.
- Hawking radiation carries away astronaut's bits of information

A PROBLEM

PROBLEM WITH FIREWALLS

- According to Equivalence Principle, astronaut should see "no drama" (i.e. no fire)!
- Astronaut sees no cause for firewall any more than he would in empty space!

Zzzzzz...

PILLARS OF MODERN PHYSICS

Wormholes

• Juan Maldacena, Leonard Susskind, 2013 - Cool horizons for entangled black holes

MICROSCOPIC WORMHOLES

- Mathematics of wormholes seem to be mathematically similar to quantum entanglement!
- In-falling particles and Hawking radiation are connected by wormholes through additional dimension of space.
 - → Side-steps entanglement monogamy problem.
 - → Preserves information and equivalence principle.

NO BLACK HOLE INTERIORS?

 Stephen Hawking, 2014 - Information Preservation and Weather Forecasting for Black Holes (non-technical)

EVENT HORIZONS AS END OF SPACETIME

- Space & time may NOT be fundamental entity.
 - → Emergent property of quantum entanglement.
- Entanglement mechanism, and thus spacetime, may stop before event horizon.
 - → no "inside" of the event horizon
 - → no Firewall!
 - → no information loss

THE UPSHOT

WHAT THIS RESEARCH TELLS US

- Finding apparent inconsistencies with existing laws.
 - → Is information NOT conserved?
 - → Does quantum mechanics work differently than we thought?
 - → Is the Equivalence Principle of General Relativity wrong?
 - → Is faster-than-light information transfer possible?
- Confusion can be GOOD!
 - → Generally believed that resolution likely to profoundly affect our understanding of fundamental physics.
 - Presents opportunity for fresh sharp minds to make major contributions.

SUGGESTED SOURCES

- Black Hole Wars by Leonard Susskind
- Entanglement by Amir D. Aczel
- Black holes, quantum information, and the foundations of physics, Steven B. Giddings, Physics Today, 2013
- iTunes/Youtube interviews and talks
 - → Falling into a Black Hole (Google hangout discussion with Maldacena, Susskind, Bousso, Polchinski)
 - → Susskind popular talk on Holographic Principle.
 - → Fuzz or Fire Conference at KITP 8/13
- Papers at <u>arxiv.org</u>